KDM1A/LSD1 regulates the differentiation and maintenance of spermatogonia in mice

نویسندگان

  • Dexter A Myrick
  • Michael A Christopher
  • Alyssa M Scott
  • Ashley K Simon
  • Paul G Donlin-Asp
  • William G Kelly
  • David J Katz
چکیده

The proper regulation of spermatogenesis is crucial to ensure the continued production of sperm and fertility. Here, we investigated the function of the H3K4me2 demethylase KDM1A/LSD1 during spermatogenesis in developing and adult mice. Conditional deletion of Kdm1a in the testis just prior to birth leads to fewer spermatogonia and germ cell loss before 3 weeks of age. These results demonstrate that KDM1A is required for spermatogonial differentiation, as well as germ cell survival, in the developing testis. In addition, inducible deletion of Kdm1a in the adult testis results in the abnormal accumulation of meiotic spermatocytes, as well as apoptosis and progressive germ cell loss. These results demonstrate that KDM1A is also required during adult spermatogenesis. Furthermore, without KDM1A, the stem cell factor OCT4 is ectopically maintained in differentiating germ cells. This requirement for KDM1A is similar to what has been observed in other stem cell populations, suggesting a common function. Taken together, we propose that KDM1A is a key regulator of spermatogenesis and germ cell maintenance in the mouse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells

Epigenetic mechanisms underlie the phenotypic plasticity of cells, while aberrant epigenetic regulation through genetic mutations and/or misregulated expression of epigenetic factors leads to aberrant cell fate determination, which provides a foundation for oncogenic transformation. Lysine-specific demethylase-1 (LSD1, KDM1A) removes methyl groups from methylated proteins, including histone H3,...

متن کامل

Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma

The chromatin-modifying enzyme lysine-specific demethylase 1, KDM1A/LSD1 is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells and its overexpression correlated with aggressive disease, poor differentiation and infaust outcome. Here, we show that LSD1 physically binds MYCN both in vitro and in vivo and that such an interaction requires the MYCN BoxIII. We f...

متن کامل

The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex

The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal pr...

متن کامل

Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage

Proper DNA damage response is essential for the maintenance of genome integrity. The E3 ligase RNF168 deficiency fully prevents both the initial recruitment and retention of 53BP1 at sites of DNA damage. In response to DNA damage, RNF168-dependent recruitment of the lysine-specific demethylase LSD1 to the site of DNA damage promotes local H3K4me2 demethylation and ubiquitination of H2A/H2AX, fa...

متن کامل

The histone LSD1 demethylase in stemness and cancer transcription programs.

DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017